Differential Equivalence for Linear Differential Algebraic Equations
نویسندگان
چکیده
Differential-algebraic equations (DAEs) are a widespread dynamical model that describes continuously evolving quantities defined with differential equations, subject to constraints expressed through algebraic relationships. As such, DAEs arise in many fields ranging from physics, chemistry, and engineering. In this article, we focus on linear DAEs, develop theory for their minimization up an equivalence relation. We present equivalence, which relates DAE variables have equal solutions at all time points (thus requiring them start initial conditions) extends the line of research bisimulations developed Markov chains ordinary equations. apply our results electrical engineering domain, showing can explain invariances certain networks as well analyze could not be originally treated due size.
منابع مشابه
Linear Differential Algebraic Equations with Constant Coefficients
Differential-algebraic equations (DAEs) arise in a variety of applications. Their analysis and numerical treatment, therefore, plays an important role in modern mathematics. The paper gives an introduction to the topics of DAEs. Examples of DAEs are considered showing their importance for practical problems. Some essential concepts that are really essential for understanding the DAE systems are...
متن کاملApproximately $n$-order linear differential equations
We prove the generalized Hyers--Ulam stability of $n$-th order linear differential equation of the form $$y^{(n)}+p_{1}(x)y^{(n-1)}+ cdots+p_{n-1}(x)y^{prime}+p_{n}(x)y=f(x),$$ with condition that there exists a non--zero solution of corresponding homogeneous equation. Our main results extend and improve the corresponding results obtained by many authors.
متن کاملComputer methods for ordinary differential equations and differential-algebraic equations
Spend your few moment to read a book even only few pages. Reading book is not obligation and force for everybody. When you don't want to read, you can get punishment from the publisher. Read a book becomes a choice of your different characteristics. Many people with reading habit will always be enjoyable to read, or on the contrary. For some reasons, this computer methods for ordinary different...
متن کاملMinimax state estimation for linear stationary differential-algebraic equations ?
This paper presents a generalization of the minimax state estimation approach for singular linear Differential-Algebraic Equations (DAE) with uncertain but bounded input and observation’s noise. We apply generalized Kalman Duality principle to DAE in order to represent the minimax estimate as a solution of a dual control problem for adjoint DAE. The latter is then solved converting the adjoint ...
متن کاملPolynomial Chaos for Linear Differential Algebraic Equations with Random Parameters
Technical applications are often modeled by systems of differential algebraic equations. The systems may include parameters that involve some uncertainties. We arrange a stochastic model for uncertainty quantification in the case of linear systems of differential algebraic equations. The generalized polynomial chaos yields a larger linear system of differential algebraic equations, whose soluti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Automatic Control
سال: 2022
ISSN: ['0018-9286', '1558-2523', '2334-3303']
DOI: https://doi.org/10.1109/tac.2021.3108530